The Ups and Downs of UAS in Washington Wheat Breeding

Dr. Arron Carter and Andrew Herr

Collaborators: Drs. Mike Pumphrey and Sindhuja
Sankaran and Peter Schmuker

Past students: Karansher Sandhu, Lance Merrick, Dennis Lozada, Jayfred Godoy, and Shiferaw Gizaw

Washington State University
Department of Crop and Soil Sciences
Pullman, WA 99164
ahcarter@wsu.edu

2011-2013 started looking at SRI and correlations to traits, seeing if they could be used for indirect selection

Esten Mason-CSU

SPECIAL ISSUE: ADVANCES IN GENOMIC SELECTION AND APPLICATION OF MACHINE LEARNING IN GENOMIC PREDICTION

Multitrait machine- and deep-learning models for genomic selection using spectral information in a wheat breeding program

Karansher Sandhu, Shruti Sunil Patil, Michael Pumphrey, Arron Carter X

Volume 14, Issue 3 November 2021 e20119 Advances in Genomic

This article also appears in: Selection and Application of Machine Learning in Genomic Prediction

Front. Plant Sci., 12 February 2021 | https://doi.org/10.3389/fpls.2021.613300

Combining Genomic and Phenomic Information for Predicting Grain Protein Content and Grain Yield in **Spring Wheat**

🁔 Karansher S. Sandhu¹, 🔝 Paul D. Mihalyov², 🔝 Megan J. Lewien³, 👸 Michael O. Pumphrey¹ and 🕒 Arron H. Carter¹

Independent-Validation Accuracies

Table 5. Genomic selection accuracies for three different environments (2014-16) using univariate GS model, all spectral reflectance indices in a univariate model at heading and grain filling stage (SRIr), GS + SRI in a covariate model with SRI as covariate, and multivariate GS model for prediction of grain yield and grain protein content in a spring wheat NAM panel.

Trait			2014	2015 2016		
Grain yield	Model	Stage				
	UniGS		0.43 (0.007)	0.40 (0.007)		
	SRI	Heading	0.44 (0.007)	0.07 (0.009) 0.21 (0.007)		
		Grain filling	0.50 (0.007)	0.13 (0.009) 0.25 (0.007)		
	GS +SRI	Heading	0.52 (0.006)	0.37 (0.007)		
		Grain filling	0.57 (0.007)	0.40 (0.007)		
	Multi-GS	Heading	0.55 (0.006)	0.3% (0.000)		
		Grain filling	0.58 (0.007)	0.4 2014_Grain protein content		
GPC				0.8 3.61 3.45 3.15 3.25 3.28 2.98 3.68 3.04 2.54		
	UniGS		0.51 (0.002)	0.5: 20.7		
	SRI	Heading	0.39 (0.007)	0.3'		
		Grain filling	0.31 (0.007)	0.34		
	GS +SRI	Heading	0.63 (0.006)	0.5 \(\frac{1}{2} \) 0.5		
		Grain filling	0.59 (0.005)	0.5:		
	Multi-GS	Heading	0.64 (0.006)	0.51 2 0.4-		
		Grain filling	0.60 (0.005)	0.5 0.3		
Parenthesis indicates the standard error				Model and SRI		

Model

Univariate_GS MV_ARI MV_PRI

MV_NDVI MV_NWI MV_GNDVI Lozada DN, Godoy JV, Ward BP, Carter AH. Genomic Prediction and Indirect Selection for Grain Yield in US Pacific Northwest Winter Wheat Using Spectral Reflectance Indices from High-Throughput Phenotyping. Int J Mol Sci. 2019 Dec 25;21(1):165. doi: 10.3390/ijms21010165.

Table 3. Percentage of the top 25% (N= 115) highest yielding lines correctly selected using spectral reflectance indices across four site-years for a Pacific Northwest winter wheat diversity panel.

Index ¹	LND17	LND18	PUL17	PUL18
NDRE-1	66.1	47.0	29.6	29.6
NDRE-2	66.1	46.1	26.1	31.3
NDVI	65.2	47.8	31.3	29.6
NWI-1	66.1	50.4	13.9	30.4
SR	65.2	45.2	31.3	27.8

¹ NDRE- Normalized Difference Red Edge; NDVI- Normalized Difference Vegetative Index; NWI-1 Normalized Water Index; SR- Simple Ratio

Genomics combined with UAS data enhances prediction of grain yield in winter wheat Osval A. Montesinos-López¹, Andrew W. Herr², José Crossa^{3,4}, Arron H. Carter^{2*},

Esten Mason-CSU

Forward Prediction Accuracy for ELITE in 2021

Plant Breeding in the 21st Century

- Ensure data is calibrated well and collect as much data as possible every year
- SRI and Model performance will vary across traits and programs
- SRI traits very useful in predicting in-season performance, but not in predicting the next year (negative selection)
- Multi-year SRI data useful in developing prediction models or combining with genomic selection
- Use selection models as another trait along with current year data

