Genotyping Tools and Resources: PHG

Katherine Jordan, USDA-ARS, HWWGRU, Manhattan, Kansas Annual WheatCap Meeting PAG, San Diego January 15, 2023

The Practical Haplotype Graph (PHG) Tool

- Computational Framework (efficient storage and reproducible)
 - Source code configured in Singularity container with all needed bioinformatics software packages
- Customizable Relational Database
 - Build customized database with your germplasm
 - Make new database on experiment basis, or add to existing
- Pan-genome
 - Reference Genome
 - WGS representative diversity of input germplasm
 - Can store genome assemblies (SV)
 - More powerful than single reference platform
- Imputation tool
 - Generate meaningful data with low sequencing coverage
 - Cost effective with GBS, skim-sequencing, etc...
 - Agnostic platform: Combines different technologies
- Continuing to improve the capabilities

https://bitbucket.org/bucklerlab/practicalhaplotypegraph/wiki/Home

Lessons from WheatPHGv1

- Reference Ranges CSv1.1 genes; 65 founding accessions
- Imputation accuracy is best with matched data, 92% with 0.01x
 - Best with matched data (genic ranges/EC data), but >87% with GBS
- Concordance improves with representative haplotypes in database
 - With representative haplotype PHG accurately imputes across alien segment
 - Imputation is 89% accurate with one parent in database with GBS data
- Concordance improves with more frequent haplotypes in database
 - > 90% accurate with MAF > 0.1 (MAF based on database founders)

WheatCap PHG version2; Newer DB version 0.35

- Reference ranges Coordinates based on genes from RefSeq v2.1
- 472 taxa sequenced using Exome Capture
 - 90 Southern Great Plains
 - 94 Northern Great Plains
 - 95 Southern and Eastern US
 - 193 Pacific Northwest region
- Database footprint 146Gb

Market Class	PHG v2
Spring	48
HardRedWinter	59
HardRedSpring	13
SoftRedWinter	39
SoftWinter	42
Winter	35
SoftWhiteWinter	14
HardWhiteWinter	14

• T3 has access to this database to use for imputation

PHGv2 Founders > 5 million segregating variants

Density

MAF

760Mb

852Mb

424 565

706 847 988

1129 1270

>1270

0.5

0.4

Imputation Test Cases (fastq files)

- Allegro data; 95 SWW lines
 - Wheat Cap database:~400 lines
 - PHGv2 Reference: CSv1.1
 - 106M SE 100bp/taxa = ~0.3x RR cov
 - Compared to Allegro calls (Brian Ward)

Skim Exome Capture; 12 HWW lines

- Winter Wheat database: 83 lines
- PHGv2 Reference: CSv2.1
- 491,526 PE reads/taxa = ~0.4x RR cov
- Compared to GATK pipeline ~20x data

Imputation Test Cases (vcf files) Clay Birkett

• T3 crew testing new database for imputation from vcf files

Genotype Protocol		PHG founder accession		Not PHG founder	
Infinium 90K		94%		79%	
Infinium 9K		93%		71%	
GMS		89%			
Jason 3K chip (*.fq)		97%			
Protocol	Down	sample	Markers		Accuracy
Skim Exome	10		76,147		94%
Capture	30		25,608		94%
13 accessions **not in PHG	100		7,618		94%
	300		2,865		93%

- More data points = Better imputation accuracies
- Different genotyping methods give different concordance (RR coverage?)

Summary

- PHGv2 with CSv2.1 genome is available for imputation via T3 staff
 - .fastq or .vcf imputation
 - Includes all market classes (more inclusive than PHGv1 65 accessions)
- Imputation accuracies compared to previously constructed HQ variants
 - PHG founders accuracies better than non-founders
 - Confounded by germplasm 'discrepancies' ?
 - Still not as concordant as PHG founders (consistent with PHGv1 conclusions)
- Room for improvement
 - work in progress testing imputation parameters

PHG Wheat Group

- Cornell-USDA Buckler group
- Peter Bradbury
- Lynn Johnson
- Terry Casstevens
- Jean Luc Jannink
- Clay Birkett
- David Waring
- Jason Fiedler
- Brian Ward
- Bikash Poudel
- Eduard Akhunov
- Alina Akhunova
- All PHG Hackathon participants

USDA Agricultural Research Service

Discussion on Wheat PHG

- Filter the imputed datasets to maximize uses?
 - Test genomic selection models with imputed data
 - ~450,000 markers from WheatCapv2 likely more accurate than rarer variants
 - WheatCap: various mid-density inputs discussed today with T3 imputation
 - Mid-density genotyping platforms appear to impute differently -> (Reference ranges, coverage)
- Continue to test parameters to get better accuracies across reference ranges
 - mxDiv; number of consensus haps, minimap2 sensitivity, etc...
 - How will it handle hets, currently we are ignoring hets
 - Broaden founders? Currently 472 taxa
- Input on parameters, reference ranges, assemblies, one for all or tailored PHGs?
- New PHG version is out: 1.x (September 2022)
 - Output: imputed g.vcf files (likely to combine multiple projects)
 - More computationally efficient but does not currently support wheat chromosome lengths

PHG: Reference based system (CS RefSeq v1.1)

65 wheat accessions sequenced using Exome capture (Krasileva, et al, PNAS, 2017)

Create Pan-genome from Diversity Data

- Collapse diversity data into consensus haplotypes
- Parameters in config file that help with haplotype collapsing
 - Diversity (max diversity) & Number Taxa etc... (keep low frequency haplotypes)
- Stores consensus haplotypes sequence pangenome.fa by haplotype ID
 - Accession information is represented as haplotype IDs in database
 - Pan-genome represents all diversity in the founding accessions

Map low coverage reads to pan-genome

- Input GBS, skim seq (fastq)
- Aligns to pangenome haplotypes (minimap2)
- Finds path through the graph (HMM set probability threshold)
- Imputes across missing reference ranges
 - Output: Best path through graph by hap ID

Accuracy of down-sampled data

Protocol	Down sample	Markers	Accuracy
Exome Capture 13 accessions	10	76,147	94%
	30	25,608	94%
	100	7,618	94%
	300	2,865	93%
Illumina 90K 79 accessions	1	21,814	93%
	10	2,486	93%
	30	1054	93%
	100	553	87%

Accuracy by marker, Illumina 90K

0.8

1.0

Accuracy by minor allele frequency Illumina 90K

Imputation accuracy, accessions not in PHG

0

0.5

0.4