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phenotypic outcomes of a particular genotype



improve our ability to detect causal genes and pathways

RNA-seq data for 198 diverse wheat accessions

Sequence- and array-based genotyping at 2.4 million SNP sites using Nimblegen wheat regulatory capture
(Gardiner et al., 2019)

15K cis/trans-eQTL in spikes and seedlings (T3 database)
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eQTL variants

He et al., Nat. Communications 2021



marker-trait associations identified in the WheatCAP and IWYP
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fraction of showing biased (unbalanced) expression

Homoeologous gene triplets

Wheat genomes
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homoeologous genes across wheat accessions

cis-regulatory mutations in both

No regulatory mutations homoeologs lead to biased expression
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Trait prediction using ridge regression gy Scmos . ScC=0.25
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Development of genomic resources for WheatCAP 2022-2026

. Panel; 200 wheat lines representative of the US wheat breeding germplasm,
parents of mapping populations, and wild relatives

. Characterization of genomic and regulatory diversity by low-pass sequencing
. Characterization of transcriptomic diversity (Quant-Seq) across 10 tissues at

different developmental stages:

1) Seedling root + vegetative at 1 week; 2) Crown with axillary tillers and roots
at 4 weeks; 3) Flag leaf sheath + lamina at complete emergence; 4) Root
apices at 15 d; 5) Vegetative apex at 3 weeks; 6) Double ridge stage; 7)
Terminal spikelet stage; 8) Spikelet at complete gynoecium development; 9)
Grain from plants at Zadoks 71 stage (milk development stage); 10) Grain
from plants at Zadoks 83 stage (dough development stage).

. eQTL mapping and identification of variants affecting both gene expression and
phenotype



the wheat genome

1000 wheat exomes
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Exome capture (T3 database)

Natural variation: 1,000 genetically and geographically diverse wheat accessions
were re-sequenced using Nimblegen exome capture resulting in discovery >7 M
SNPs, which are deposited into the T3 database.

337 wheat cultivars representing the genetic diversity of modern US wheat
breeding programs were re-sequenced by exome capture (~ 7 M SNPs).

Induced variation: also used to sequence 1536 4x and 1200 6x EMS mutants and to
identify 10,000,000 induced mutations in coding regions. Re-mapped RefSeq v1.0

He at al., 2019, Nat. Genetics
Kuzay et al., 2019, TAG

Promoter capture (Gardiner et al, GigaScience, 2019)

Natural variation: Targeted capture of regulatory regions in 250 wheat lines
including the Wheat CAP ~3.2 M SNPs.

Induced variation: mutations in all promoters of 1,536 tetraploid EMS mutants.
Sequenced so far 26% lines: >4 M mutations.



genotype imputation

Practical Haplotype Graph

Wheat Practical Haplotype Graph tool: ~400 wheat cultivars representing

the genetic diversity of modern US wheat breeding programs were re-

o e T e e, o Sequenced by exome capture. This dataset is used to develop the 1% version
1y e of Wheat Practical Haplotype Graph (Jordan et al., 2021, G3).

Collaboration between USDA ARS (K. Jordan), USDA ARS Genotyping Labs,

T3 database team, and Buckler Lab)

Practical Haplotype Graph



" ThePractical Haplotype Graph (PHG) Tool

 Computational Framework (efficient storage and reproducible)
* Set of source code configured in Singularity container with all needed bioinformatics software packages

Customizable Relational Database

il

* Build customized database with your germplasm

* Make new database on experiment basis, or add to existing

Imputation

* Pan-genome Tool

* Reference Genome _

* WGS — representative diversity of input germplasm omputationa

» Capable of storing genome assemblies (SV) Framework

* More powerful than single reference platform

Imputation tool g

* Generate meaningful data with low sequencing coverage
* Cost effective with GBS, skim-sequencing, etc...
» Agnostic platform: Capable of combining different technologies

e Continuing to improve the capabilities



" PHG:Reference based system (CS RefSeqv1.1)

Outside of PHG :
Generate sequence data
Align to same reference

Exome Capture
Sequenced Libraries

Quality Control

¥

Alignment

¥

g.vcf

65 wheat accessions sequenced using exome capture (Jordan et al., 2021, G3)

Step 1:
Database Construction
Load Reference Genome

Step 2:
Populate Database
Load Diversity Data (g.vcf
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Within PHG Framework
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1: Separate genome
into informative and
noninformative ranges

2: Populate the database

Genomes stored
as sequences of
haplotypes
instead of
nucleotides
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Step 3:
Create Consensus -

Collapse Haplotypes

Jordan et al, G3, 2021

 Collapse diversity data into consensus haplotypes

* Stores consensus haplotypes sequence by haplotype ID
* Accession information is represented as haplotype IDs in database
* Pan-genome represents all diversity in the founding accessions



© Map low coverage NGS to pan-genome

Exome Capture, GBS,
skimSeq libraries

!

Quality Control

{0 _

Step 4:
fq Impute Skim Data

\) Find Path through PHG

* Input GBS, skim seq (fastq)

Jordan et al, G3, 2021

. . . RR1 RR3 RR5 RR7
 Aligns to pangenome haplotypes (minimap?2) oy e
* Finds path thrOUﬁh the graph (HMM set I . - o Cov Ace 2
probability threshold) Il B
.. Low Cov Acc 3
* Imputes across missing reference ranges Bl B O O e
e Output: Best path through graph by hap ID Bl | B B ovcovAcem
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* T. aestivum (58), A. tauschii
(3), T. turgidum (4)
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>1.5 million variants
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The number of SNPs within 1Mb window size
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¢ % 88.3%
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WheatPHGv1 imputed 92% with 0.01x

Jordan et al, G3, 2021



Imputation Accuracy witH GBS > 87°’o

b. C.
* Used GBS data to test imputation 0.95
concordance 0.90 *
* ~5% overlap with exome capture 085 0.90
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frequent haplotypes in database

Jordan et al, G3, 2021



DD,
Future directions (Wheat PHG v.2)

1. Expand PHG database representation using NGS from 600 wheat
accession including lines from all breeding programs

ncorporate wheat pan-genome into PHG

ncorporate GBS ranges into PHG

ncorporate medium density genotyping markers into PHG

ntegration of PHG into BreedBase (J. Jannink)
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